M
MercyNews
Home
Back
The Hidden Antenna Network Inside Your Smartphone
Технологии

The Hidden Antenna Network Inside Your Smartphone

Habr5d ago
3 мин чтения
📋

Key Facts

  • ✓ Antenna efficiency is highest when the physical size is between ¼ and ½ of the signal's wavelength.
  • ✓ A 900 MHz cellular signal has a wavelength of approximately 33.3 centimeters, requiring a theoretical antenna length of around 8 centimeters for optimal performance.
  • ✓ Modern smartphones must support a wide array of radio protocols, including Wi-Fi (2.4, 5, and 6 GHz), Bluetooth, cellular bands from 900 MHz to over 4 GHz, and NFC at 13.56 MHz.
  • ✓ Engineers often use inverted-F antenna (IFA) designs to cover multiple frequency bands within a compact physical footprint.
  • ✓ High-frequency 5G mmWave signals are particularly challenging to manage due to their short wavelengths and susceptibility to physical obstruction.
  • ✓ Future antenna designs for foldable devices require flexible materials that maintain electrical properties even when bent.

In This Article

  1. The Physics of Pocket-Sized Connectivity
  2. Defying the Laws of Physics
  3. The Invisible Architecture
  4. Managing the Spectrum
  5. The Future of Antenna Design
  6. Key Takeaways

The Physics of Pocket-Sized Connectivity#

From a basic physics perspective, antenna size is directly proportional to the wavelength of the signal it transmits. The most efficient antennas typically measure between ¼ and ½ of the signal's wavelength. This fundamental principle presents a significant challenge for modern smartphone design.

Consider a smartphone operating on a 900 MHz cellular frequency. The corresponding wavelength is approximately 33.3 centimeters. Even a quarter-wave antenna would need to be around 8 centimeters long. When you factor in the multitude of other radio protocols packed into a single device, the engineering puzzle becomes complex.

Today's devices must simultaneously manage a crowded radio spectrum. This includes:

  • Wi-Fi across 2.4, 5, and 6 GHz bands
  • Bluetooth at 2.4 GHz
  • Cellular connectivity spanning 900 MHz to over 4 GHz
  • NFC operating at 13.56 MHz

So, how do engineers fit all these antennas into a slim chassis? The solution lies in advanced engineering and clever spatial design.

Defying the Laws of Physics#

The core challenge is reconciling the inverse relationship between frequency and antenna size. Lower frequencies, which travel farther and penetrate obstacles better, require larger antennas. High-frequency signals, like those used for 5G mmWave or Wi-Fi 6, can use much smaller components.

However, a smartphone cannot simply ignore the lower end of the spectrum. 900 MHz and 1800 MHz bands are crucial for reliable cellular coverage in urban and rural areas alike. An 8-centimeter antenna is physically impossible to fit inside a device that is only 7-8 millimeters thick.

This constraint forces engineers to move beyond simple quarter-wave dipoles. Instead, they rely on:

  • Resonant structures that are electrically longer than they are physically
  • Ground plane utilization to enhance performance
  • Advanced materials that allow for compact tuning

The goal is not always maximum theoretical efficiency, but rather acceptable performance within extreme size constraints. The antenna system must be tuned to the specific geometry of the device itself.

"Any article about antennas inevitably descends into the murky terminology of impedance, SWR, and Q-factor."

— Source Content

The Invisible Architecture#

Inside a modern smartphone, antennas are rarely standalone wires. They are often printed traces on the device's internal frame, integrated into the display assembly, or laminated into the back glass. This integration allows them to occupy space that would otherwise be empty.

For the wide range of frequencies required, engineers employ a strategy of dedicated antennas rather than a single universal one. A smartphone typically contains separate antenna systems for:

  • Cellular main and diversity bands
  • Global Positioning System (GPS)
  • Wi-Fi and Bluetooth
  • Near Field Communication (NFC)

These systems must be isolated from one another to prevent interference. The placement is critical; for example, NFC antennas are usually located near the top of the device to ensure reliable tap-to-pay functionality, while cellular antennas are often positioned along the bottom or sides to maintain signal integrity when held.

Any article about antennas inevitably descends into the murky terminology of impedance, SWR, and Q-factor.

Without a degree in radio engineering, these concepts can be daunting. However, the practical result is a device that seamlessly switches between frequencies and protocols without the user noticing the complex coordination happening inside.

Managing the Spectrum#

The radio frequency (RF) environment inside a smartphone is a crowded one. With protocols like Wi-Fi 6 and 5G operating in similar high-frequency ranges, spectral efficiency is paramount. Engineers must design antennas that are not only compact but also broadband—capable of operating efficiently across multiple frequency bands.

One common approach is the use of inverted-F antennas (IFA) and monopole designs. These configurations are compact and can be tuned to cover several bands. By adjusting the physical length and electrical loading, a single antenna structure can often handle multiple cellular bands or a portion of the Wi-Fi spectrum.

However, there are trade-offs. A single antenna trying to cover too many frequencies will suffer from reduced efficiency and gain. This is why high-end devices often feature multiple antennas dedicated to specific tasks, ensuring that critical connections like 5G or Wi-Fi remain stable even when the device is in a challenging RF environment.

The integration of these systems requires careful electromagnetic simulation during the design phase. Engineers model how the antennas interact with the phone's metal frame, battery, and other components to optimize placement and minimize signal loss.

The Future of Antenna Design#

As wireless technology evolves, the demand for antenna real estate inside smartphones will only increase. The rollout of 5G mmWave presents a particularly difficult challenge, as these high-frequency signals have very short wavelengths but are easily blocked by obstacles, including the user's hand.

To combat this, manufacturers are experimenting with beamforming and phased array techniques. These technologies use multiple small antennas to direct signals in specific directions, improving reception and allowing for more efficient use of space. Instead of a single omnidirectional antenna, the device can create a focused beam of energy.

Furthermore, the push for foldable and rollable devices introduces new form factors. Antennas must be flexible and durable, capable of bending without losing their electrical properties. This requires new materials and innovative manufacturing processes.

Ultimately, the hidden architecture of smartphone antennas is a testament to engineering ingenuity. By combining physics, materials science, and clever design, manufacturers continue to pack more connectivity into less space, keeping us connected in an increasingly wireless world.

Key Takeaways#

The ability to fit multiple antennas for diverse frequencies into a slim smartphone is a complex engineering feat. It relies on understanding the fundamental relationship between wavelength and antenna size, and finding creative ways to work within those physical limits.

Key strategies include using resonant structures, integrating antennas into the device's frame, and employing broadband designs that cover multiple frequencies. The result is a seamless connectivity experience that belies the intricate RF architecture hidden inside.

As we move toward 6G and more advanced wireless standards, these challenges will only grow. The future of smartphone design will depend on continued innovation in antenna technology, ensuring that our devices remain connected no matter where we are.

#wi-fi#4G#Беспроводные сети#антенна#LTE#5G#точка доступа#NFC#длина волны#радио

Continue scrolling for more

ИИ преобразует математические исследования и доказательства
Technology

ИИ преобразует математические исследования и доказательства

Искусственный интеллект перешел из статуса непостоянного обещания в реальность, преобразуя математические исследования. Модели машинного обучения теперь генерируют оригинальные теоремы.

Just now
4 min
366
Read Article
Стратегия Google в школах: формирование лояльности к бренду на всю жизнь
Technology

Стратегия Google в школах: формирование лояльности к бренду на всю жизнь

Внутренние документы Google из иска по защите прав детей раскрывают стратегию по вовлечению школьников в свою экосистему для формирования лояльности к бренду на всю жизнь.

22h
5 min
2
Read Article
Ноутбуки Nvidia на Arm бросают вызов Intel Inside
Technology

Ноутбуки Nvidia на Arm бросают вызов Intel Inside

Утечка информации показала, что Lenovo разработала шесть ноутбуков на базе будущих процессоров Nvidia N1 и N1X, что знаменует собой крупный сдвиг на рынке Windows-ноутбуков.

23h
5 min
2
Read Article
Открытый исходный код для автономного вождения расширяется до 325 моделей автомобилей
Technology

Открытый исходный код для автономного вождения расширяется до 325 моделей автомобилей

Платформа с открытым исходным кодом для автономного вождения расширила совместимость до 325 моделей автомобилей от 27 брендов, демократизируя доступ к передовым технологиям помощи водителю.

23h
5 min
2
Read Article
Ford выходит на рынок электрических полуприцепов с моделью F-Line E 2026 года
Automotive

Ford выходит на рынок электрических полуприцепов с моделью F-Line E 2026 года

Ford представит электрический полуприцеп F-Line E на рынке Западной Европы этим летом. Новая модель будет доступна в конфигурациях 4x2 и 6x2 с грузоподъемностью 26 тонн и крутящим моментом до 1820 фунт-футов.

23h
5 min
1
Read Article
ChargePoint расширяет зарядку электромобилей на парковках аренды автомобилей
Technology

ChargePoint расширяет зарядку электромобилей на парковках аренды автомобилей

ChargePoint устанавливает публичные зарядные станции для электромобилей на парковках аренды автомобилей в Висконсине, расширяя доступность зарядки в Эпплтоне и Мэдисоне.

1d
5 min
3
Read Article
Янн Лекун запускает AMI Labs: внутренняя история нового стартапа в области ИИ
Technology

Янн Лекун запускает AMI Labs: внутренняя история нового стартапа в области ИИ

Янн Лекун, пионер в области ИИ, покинул Meta для основания нового стартапа AMI Labs. Проект сосредоточен на разработке передовых мировых моделей для систем искусственного интеллекта.

1d
5 min
3
Read Article
Разработчики Ubisoft выражают глубокое разочарование из-за внутренних проблем
Technology

Разработчики Ubisoft выражают глубокое разочарование из-за внутренних проблем

Разработчики Ubisoft выражают глубокое разочарование и стыд из-за внутренней культуры и направления компании. Настроение, по-видимому, распространено, и сотрудники устали от повторяющихся проблем.

1d
5 min
2
Read Article
Десятилетний мод для The Sims 4 сохраняет поразительную популярность
Technology

Десятилетний мод для The Sims 4 сохраняет поразительную популярность

Десятилетний мод для The Sims 4 с откровенным контентом и полной наготой сохраняет огромную популярность в игровом сообществе, подчеркивая долговременное влияние пользовательских модификаций.

1d
5 min
2
Read Article
Новая модель доходов OpenAI: процент от исходов ИИ-ассистированных исследований и разработок
Technology

Новая модель доходов OpenAI: процент от исходов ИИ-ассистированных исследований и разработок

OpenAI переходит от подписок к разделению доходов: компания будет получать процент от выручки клиентов, созданной с помощью ИИ в R&D. Это меняет правила игры на рынке.

1d
5 min
2
Read Article
🎉

You're all caught up!

Check back later for more stories

На главную